CUED Publications database

A lifting method for analyzing distributed synchronization on the unit sphere

Thunberg, J and Markdahl, J and Bernard, F and Mendes Silva Goncalves, JM (2018) A lifting method for analyzing distributed synchronization on the unit sphere. Automatica, 96. pp. 253-258. ISSN 0005-1098 (Unpublished)

Full text not available from this repository.


This paper introduces a new lifting method for analyzing convergence of continuous-time distributed synchronization/consensus systems on the unit sphere. Points on the d-dimensional unit sphere are lifted to the (d + 1)-dimensional Euclidean space. The consensus protocol on the unit sphere is the classical one, where agents move toward weighted averages of their neighbors in their respective tangent planes. Only local and relative state information is used. The directed interaction graph topologies are allowed to switch as a function of time. The dynamics of the lifted variables are governed by a nonlinear consensus protocol for which the weights contain ratios of the norms of state variables. We generalize previous convergence results for hemispheres. For a large class of consensus protocols defined for switching uniformly quasi-strongly connected time-varying graphs, we show that the consensus manifold is uniformly asymptotically stable relative to closed balls contained in a hemisphere. Compared to earlier projection based approaches used in this context such as the gnomonic projection, which is defined for hemispheres only, the lifting method applies globally. With that, the hope is that this method can be useful for future investigations on global convergence.

Item Type: Article
Uncontrolled Keywords: Multi-agent systems Consensus on the sphere Attitude synchronization Control of networks Control of constrained systems Asymptotic stabilization
Divisions: Div F > Control
Depositing User: Cron Job
Date Deposited: 12 Jun 2018 01:36
Last Modified: 02 Sep 2021 05:17
DOI: 10.1016/j.automatica.2018.07.007