CUED Publications database

Quantification of the level of samarium/barium substitution in the Ag-Sm1+xBa2-xCu3O7-delta system

Zhao, W and Shi, Y and Zhou, D and Dennis, AR and Cardwell, DA (2018) Quantification of the level of samarium/barium substitution in the Ag-Sm1+xBa2-xCu3O7-delta system. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 38. pp. 5036-5042. ISSN 0955-2219

Full text not available from this repository.


The high-temperature SmBa2Cu3O7-δ (Sm-123) superconducting system, which is characterised by a high critical transition temperature (Tc) and a high critical current density (Jc), suffers severely from the effects of Sm/Ba substitution in the superconducting Sm-123 phase matrix, and especially so for large, single grains grown in air, resulting in a significant variation in Tc at different positions within a single grain. As a result, the suppression of Sm/Ba substitution in the Sm1+xBa2-xCu3O7-δ phase matrix (SmBCO, where x represents the Sm/Ba substitution level in the SmBCO system) is critical to achieving good superconducting properties in this material. Here we report the use of Electron Probe Micro-Analysis (EPMA) to investigate, adjust and optimise the composition of mechanically-stabilised standard Ag-SmBCO bulk single grains. We show that the substitution levels within these samples changes linearly within increasing distance from the vicinity of a single crystal seed used to nucleate the single grain growth process. In addition, we identify a constant value of x of – 0.080 for the composition-adjusted Ag-SmBCO bulk single grain. This is the first time that the quantification of the Sm/Ba substitution level in the SmBCO system has been measured accurately and directly using EPMA, and suggests clearly that the Sm/Ba substitution can be suppressed effectively in air. This research will provide significant insight into the development of a process to suppress Sm/Ba substitution even further in superconducting SmBCO single grains in the future.

Item Type: Article
Uncontrolled Keywords: Superconductor Perovskites Rare-earth Electron Probe Micro-Analysis (EPMA)
Divisions: Div C > Materials Engineering
Depositing User: Cron Job
Date Deposited: 06 Jul 2018 20:16
Last Modified: 07 Sep 2021 02:06
DOI: 10.1016/j.jeurceramsoc.2018.07.007