CUED Publications database

Cellular switches orchestrate rhythmic circuits

Drion, G and Franci, A and Sepulchre, R (2019) Cellular switches orchestrate rhythmic circuits. Biological Cybernetics, 113. pp. 71-82. ISSN 0340-1200

Full text not available from this repository.


Small inhibitory neuronal circuits have long been identified as key neuronal motifs to generate and modulate the coexisting rhythms of various motor functions. Our paper highlights the role of a cellular switching mechanism to orchestrate such circuits. The cellular switch makes the circuits reconfigurable, robust, adaptable, and externally controllable. Without this cellular mechanism, the circuit rhythms entirely rely on specific tunings of the synaptic connectivity, which makes them rigid, fragile, and difficult to control externally. We illustrate those properties on the much studied architecture of a small network controlling both the pyloric and gastric rhythms of crabs. The cellular switch is provided by a slow negative conductance often neglected in mathematical modeling of central pattern generators. We propose that this conductance is simple to model and key to computational studies of rhythmic circuit neuromodulation.

Item Type: Article
Uncontrolled Keywords: Central pattern generators Mathematical modeling Neuromodulation
Divisions: Div F > Control
Depositing User: Unnamed user with email
Date Deposited: 18 Sep 2018 01:45
Last Modified: 09 Sep 2021 03:01
DOI: 10.1007/s00422-018-0778-6