CUED Publications database

Transport in polymer-supported chemically-doped CVD graphene

Kang, MH and Qiu, G and Chen, B and Jouvray, A and Teo, KBK and Cepek, C and Wu, L and Kim, J and Milne, WI and Cole, MT (2017) Transport in polymer-supported chemically-doped CVD graphene. Journal of Materials Chemistry C, 5. pp. 9886-9897. ISSN 2050-7534

Full text not available from this repository.

Abstract

In this study we report on the electron transport in flexible-transparent polymer supported chemically doped chemical vapour deposited (CVD) graphene. We investigate the modified carrier transport following doping with various metal chlorides. An increase in the work function was noted for AuCl -, FeCl -, IrCl -, and RhCl -doping, whilst only SnCl doping showed a reduced work function. We attribute this to dopant-mediated charge transfer resulting in the formation of neutral atomic species. The neutral and near-neutral atomic populations produced metallic aggregates, with this agglomeration level critically dependent on the cohesive energy of the metallic component in each dopant. Micron-scale spatial conductivity mapping highlighted the spatially uniform low resistance of AuCl -doped graphene. Local conductivity enhancements at grain boundaries and lattice defects within the as-synthesised polycrystalline graphene suggested that the dopant molecules tend to reside at lattice imperfections. Temperature dependent transport studies indicated that the shifted work function improved electrical conductivity due to the increase of barrier transparency between grain boundaries. Variable Range Hopping (VRH) dominated at temperatures <140 K in undoped graphene, whereas combined Nearest Neighbour Hopping (NNH) and diffusive transport appears to play a major role throughout the transport in all doped samples. The findings herein reveal that the underlying extended transport mechanisms associated with chemically doped CVD graphene transferred to polymer supports contrast with the highly localised transport in undoped graphene. 3 3 3 3 2 3

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div B > Solid State Electronics and Nanoscale Science
Div B > Photonics
Depositing User: Cron Job
Date Deposited: 05 Feb 2019 04:30
Last Modified: 08 Apr 2021 07:47
DOI: 10.1039/c7tc02263h