CUED Publications database

Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices

Nan, K and Kang, SD and Li, K and Yu, KJ and Zhu, F and Wang, J and Dunn, AC and Zhou, C and Xie, Z and Agne, MT and Wang, H and Luan, H and Zhang, Y and Huang, Y and Snyder, GJ and Rogers, JA (2018) Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Science Advances, 4. eaau5849-.

Full text not available from this repository.


Copyright © 2018 The Authors, some rights reserved. With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaining large temperature differences across the device terminals and achieving low-thermal impedance interfaces to the surrounding environment become increasingly difficult to achieve as the characteristic dimensions decrease. Here, we propose and demonstrate an architectural solution to this problem, where thin-film active materials integrate into compliant, open threedimensional (3D) forms. This approach not only enables efficient thermal impedancematching but alsomultiplies the heat flow through the harvester, thereby increasing the efficiencies for power conversion. Interconnected arrays of 3D thermoelectric coils built using microscale ribbons of monocrystalline silicon as the active material demonstrate these concepts. Quantitative measurements and simulations establish the basic operating principles and the key design features. The results suggest a scalable strategy for deploying hard thermoelectric thin-film materials in harvesters that can integrate effectively with soft materials systems, including those of the human body.

Item Type: Article
Divisions: Div C > Materials Engineering
Depositing User: Cron Job
Date Deposited: 13 May 2019 20:06
Last Modified: 24 Nov 2020 12:06
DOI: 10.1126/sciadv.aau5849