CUED Publications database

Nonperturbative imaging of nucleoid morphology in live bacterial cells during an antimicrobial peptide attack.

Bakshi, S and Choi, H and Rangarajan, N and Barns, KJ and Bratton, BP and Weisshaar, JC (2014) Nonperturbative imaging of nucleoid morphology in live bacterial cells during an antimicrobial peptide attack. Appl Environ Microbiol, 80. pp. 4977-4986.

Full text not available from this repository.

Abstract

Studies of time-dependent drug and environmental effects on single, live bacterial cells would benefit significantly from a permeable, nonperturbative, long-lived fluorescent stain specific to the nucleoids (chromosomal DNA). The ideal stain would not affect cell growth rate or nucleoid morphology and dynamics, even during laser illumination for hundreds of camera frames. In this study, time-dependent, single-cell fluorescence imaging with laser excitation and a sensitive electron-multiplying charge-coupled-device (EMCCD) camera critically tested the utility of "dead-cell stains" (SYTOX orange and SYTOX green) and "live-cell stains" (DRAQ5 and SYTO 61) and also 4',6-diamidino-2-phenylindole (DAPI). Surprisingly, the dead-cell stains were nearly ideal for imaging live Escherichia coli, while the live-cell stains and DAPI caused nucleoid expansion and, in some cases, cell permeabilization and the halting of growth. SYTOX orange performed well for both the Gram-negative E. coli and the Gram-positive Bacillus subtilis. In an initial application, we used two-color fluorescence imaging to show that the antimicrobial peptide cecropin A destroyed nucleoid-ribosome segregation over 20 min after permeabilization of the E. coli cytoplasmic membrane, reminiscent of the long-term effects of the drug rifampin. In contrast, the human cathelicidin LL-37, while similar to cecropin A in structure, length, charge, and the ability to permeabilize bacterial membranes, had no observable effect on nucleoid-ribosome segregation. Possible underlying causes are suggested.

Item Type: Article
Uncontrolled Keywords: Antimicrobial Cationic Peptides Bacillus subtilis Cell Nucleolus Escherichia coli Fluorescent Dyes Humans Microscopy, Fluorescence Staining and Labeling
Subjects: UNSPECIFIED
Divisions: Div F > Control
Depositing User: Cron Job
Date Deposited: 21 May 2020 02:13
Last Modified: 02 Sep 2021 04:50
DOI: 10.1128/AEM.00989-14