CUED Publications database

Modeling packing density of granular mixtures: An artificial intelligence approach

Pasha, SMK and Hazarika, H and Madabhushi, SPG and Yoshimoto, N (2020) Modeling packing density of granular mixtures: An artificial intelligence approach. In: UNSPECIFIED.

Full text not available from this repository.


Copyright © Soil Mechanics and Geotechnical Engineering, ARC 2019.All rights reserved. The minimum and maximum packing density of soil-Scrap Tire Derived Materials are often estimated based on limited laboratory test results or to some extent, an empirical correlation. However precise modeling of void ratio characteristics of such materials is complex and usually involves many parameters might be beyond the capability of most of common physically based engineering methods. To solve this issue, Artificial Neural Network (ANN) method is used for simulating maximum and minimum packing density of Gravel-Tire Chips mixtures (GTCM). In this study, a series of maximum and minimum void ratio tests were conducted on GTCM with different fraction of gravel in mixture (GF=VG /VT ) at different mean particle size ratio of tire chips to gravel (D50,R /D50,G ). The outcome revealed that the ANN model is able to precisely predict void ratios of binary mixtures.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Divisions: Div D > Geotechnical and Environmental
Depositing User: Cron Job
Date Deposited: 04 Jun 2020 02:47
Last Modified: 18 Feb 2021 15:04