CUED Publications database

Piecewise Aggregate Approximation and Quantile Regression for Wind Speed Analysis

Aquino, RRBD and Silva, HBD and Albuquerque, JCD and Herrera, M and Neto, AC and Ferreira, AA (2017) Piecewise Aggregate Approximation and Quantile Regression for Wind Speed Analysis. In: International Conference on Computational Science and Computational Intelligence, 2017-12-14 to 2017-12-17 pp. 1497-1500..

Full text not available from this repository.


© 2017 IEEE. The high cost of energy production, coupled with the advantages of wind power as renewable and widely available source of energy, has led several countries to establish incentives to regulate and promote wind power generation. This work proposes the implementation and comparison of two time series analysis methods: Piecewise Aggregate Approximation (PAA) and a PAA plus quantile regression process. The aim is to estimate the minimum amount of extreme cut-in and cut-out events of the wind speed in the power generation process. Brazil has an enormous wind power potential. The diversification of its energy matrix is becoming a necessary challenge nowadays in the commitment of using renewable energy sources. The performance of the two PAA based proposals is tested for to the wind farms of the south and northeast regions. These locations belong to Brazil's regions of different geographic and wind characteristics. This endows to also check the proposals robustness under divergent scenarios. The results indicate that the PAA/QR method performed better than the PAA method because it identified a greater amount of extreme values.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Divisions: Div E > Manufacturing Systems
Depositing User: Cron Job
Date Deposited: 22 May 2020 21:07
Last Modified: 10 Apr 2021 23:15
DOI: 10.1109/CSCI.2017.262