CUED Publications database

Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: a particle-scale experimental study

Wang, Y and Soga, K and DeJong, JT and Kabla, AJ Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: a particle-scale experimental study. (Unpublished)

Full text not available from this repository.

Abstract

Microbial-Induced Carbonate Precipitation (MICP) has been explored for more than a decade as a promising soil improvement technique. However, it is still challenging to predict and control the growth rate and characteristics of CaCO3 precipitates, which directly affect the engineering performance of MICP-treated soils. In this study, we employ a microfluidics-based pore scale model to observe the effect of bacterial density on the growth rate and characteristics of CaCO3 precipitates during MICP processes occurring at the sand particle scale. Results show that the precipitation rate of CaCO3 increases with bacterial density in the range between 0.6e8 and 5.2e8 cells/ml. Bacterial density also affects both the size and number of CaCO3 crystals. A low bacterial density of 0.6e8 cells/ml produced 1.1e6 crystals/ml with an average crystal volume of 8,000 um3, whereas a high bacterial density of 5.2e8 cells/ml resulted in more crystals (2.0e7 crystals/ml) but with a smaller average crystal volume of 450 um3. The produced CaCO3 crystals were stable when the bacterial density was 0.6e8 cells/ml. When the bacterial density was 4-10 times higher, the crystals were first unstable and then transformed into more stable CaCO3 crystals. This suggests that bacterial density should be an important consideration in the design of MICP protocols.

Item Type: Article
Uncontrolled Keywords: q-bio.QM q-bio.QM cond-mat.soft
Subjects: UNSPECIFIED
Divisions: Div C > Biomechanics
Depositing User: Cron Job
Date Deposited: 22 Feb 2021 20:12
Last Modified: 25 Feb 2021 05:52
DOI: