Godsill, SJ and Vermaak, J and Ng, W and Li, JF (2007) *Models and algorithms for tracking of maneuvering objects using variable rate particle filters.* Proceedings of the IEEE, 95. pp. 925-952. ISSN 0018-9219

## Abstract

Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.

Item Type: | Article |
---|---|

Subjects: | UNSPECIFIED |

Divisions: | Div F > Signal Processing and Communications |

Depositing User: | Cron Job |

Date Deposited: | 02 Sep 2016 16:38 |

Last Modified: | 01 Dec 2016 09:45 |

DOI: |