CUED Publications database

Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth.

Hofmann, S and Sharma, R and Wirth, CT and Cervantes-Sodi, F and Ducati, C and Kasama, T and Dunin-Borkowski, RE and Drucker, J and Bennett, P and Robertson, J (2008) Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nat Mater, 7. pp. 372-375. ISSN 1476-1122

Full text not available from this repository.


Self-assembled nanowires offer the prospect of accurate and scalable device engineering at an atomistic scale for applications in electronics, photonics and biology. However, deterministic nanowire growth and the control of dopant profiles and heterostructures are limited by an incomplete understanding of the role of commonly used catalysts and specifically of their interface dynamics. Although catalytic chemical vapour deposition of nanowires below the eutectic temperature has been demonstrated in many semiconductor-catalyst systems, growth from solid catalysts is still disputed and the overall mechanism is largely unresolved. Here, we present a video-rate environmental transmission electron microscopy study of Si nanowire formation from Pd silicide crystals under disilane exposure. A Si crystal nucleus forms by phase separation, as observed for the liquid Au-Si system, which we use as a comparative benchmark. The dominant coherent Pd silicide/Si growth interface subsequently advances by lateral propagation of ledges, driven by catalytic dissociation of disilane and coupled Pd and Si diffusion. Our results establish an atomistic framework for nanowire assembly from solid catalysts, relevant also to their contact formation.

Item Type: Article
Divisions: Div B > Solid State Electronics and Nanoscale Science
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:30
Last Modified: 19 Apr 2018 02:26