CUED Publications database

Role of intermolecular forces in defining material properties of protein nanofibrils.

Knowles, TP and Fitzpatrick, AW and Meehan, S and Mott, HR and Vendruscolo, M and Dobson, CM and Welland, ME (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science, 318. pp. 1900-1903.

Full text not available from this repository.

Abstract

Protein molecules have the ability to form a rich variety of natural and artificial structures and materials. We show that amyloid fibrils, ordered supramolecular nanostructures that are self-assembled from a wide range of polypeptide molecules, have rigidities varying over four orders of magnitude, and constitute a class of high-performance biomaterials. We elucidate the molecular origin of fibril material properties and show that the major contribution to their rigidity stems from a generic interbackbone hydrogen-bonding network that is modulated by variable side-chain interactions.

Item Type: Article
Uncontrolled Keywords: Amyloid Amyloid beta-Peptides Chemistry, Physical Elasticity Humans Hydrogen Bonding Hydrophobic and Hydrophilic Interactions Insulin Lactalbumin Lactoglobulins Microscopy, Atomic Force Models, Molecular Muramidase Nanostructures Peptide Termination Factors Peptides Physicochemical Phenomena Prealbumin Prions Protein Conformation Protein Structure, Tertiary Saccharomyces cerevisiae Proteins Surface Tension alpha-Crystallin B Chain
Subjects: UNSPECIFIED
Divisions: Div B > Solid State Electronics and Nanoscale Science
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:24
Last Modified: 28 Jul 2014 01:07
DOI: 10.1126/science.1150057

Actions (login required)

View Item