CUED Publications database

Normal shock boundary layer control with various vortex generator geometries

Lee, S and Loth, E and Babinsky, H (2011) Normal shock boundary layer control with various vortex generator geometries. Computers and Fluids, 49. pp. 233-246. ISSN 0045-7930

Full text not available from this repository.

Abstract

Various vortex generators which include ramp, split-ramp and a new hybrid concept "ramped-vane" are investigated under normal shock conditions with a diffuser at Mach number of 1.3. The dimensions of the computational domain were designed using Reynolds Average Navier-Stokes studies to be representative of the flow in an external-compression supersonic inlet. Using this flow geometry, various vortex generator concepts were studied with Implicit Large Eddy Simulation. In general, the ramped-vane provided increased vorticity compared to the other devices and reduced the separation length downstream of the device centerline. In addition, the size, edge gap and streamwise position respect to the shock were studied for the ramped-vane and it was found that a height of about half the boundary thickness and a large trailing edge gap yielded a fully attached flow downstream of the device. This ramped-vane also provided the largest reduction in the turbulent kinetic energy and pressure fluctuations. Additional benefits include negligible drag while the reductions in boundary layer displacement thickness and shape factor were seen compared to other devices. © 2011 Elsevier Ltd.

Item Type: Article
Uncontrolled Keywords: Diffuser Flow control Flow separation Implicit Large Eddy Simulation Supersonic boundary layer interaction Vortex generator
Subjects: UNSPECIFIED
Divisions: Div A > Fluid Mechanics
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:22
Last Modified: 08 Dec 2014 02:31
DOI: 10.1016/j.compfluid.2011.06.003