CUED Publications database

Gaussian processes for machine learning (GPML) toolbox

Carl Edward, R and Hannes, N (2010) Gaussian processes for machine learning (GPML) toolbox. Journal of Machine Learning Research, 11. pp. 3011-3015. ISSN 1533-7928

Full text not available from this repository.

Abstract

The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference and prediction. GPs are specified by mean and covariance functions; we offer a library of simple mean and covariance functions and mechanisms to compose more complex ones. Several likelihood functions are supported including Gaussian and heavy-tailed for regression as well as others suitable for classification. Finally, a range of inference methods is provided, including exact and variational inference, Expectation Propagation, and Laplace’s method dealing with non-Gaussian likelihoods and FITC for dealing with large regression tasks.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div F > Computational and Biological Learning
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:22
Last Modified: 21 Apr 2014 01:09
DOI:

Actions (login required)

View Item