CUED Publications database

Synapses with short-term plasticity are optimal estimators of presynaptic membrane potentials.

Pfister, JP and Dayan, P and Lengyel, M (2010) Synapses with short-term plasticity are optimal estimators of presynaptic membrane potentials. Nat Neurosci, 13. pp. 1271-1275.

Full text not available from this repository.

Abstract

The trajectory of the somatic membrane potential of a cortical neuron exactly reflects the computations performed on its afferent inputs. However, the spikes of such a neuron are a very low-dimensional and discrete projection of this continually evolving signal. We explored the possibility that the neuron's efferent synapses perform the critical computational step of estimating the membrane potential trajectory from the spikes. We found that short-term changes in synaptic efficacy can be interpreted as implementing an optimal estimator of this trajectory. Short-term depression arose when presynaptic spiking was sufficiently intense as to reduce the uncertainty associated with the estimate; short-term facilitation reflected structural features of the statistics of the presynaptic neuron such as up and down states. Our analysis provides a unifying account of a powerful, but puzzling, form of plasticity.

Item Type: Article
Uncontrolled Keywords: Animals Biophysics Computer Simulation Membrane Potentials Models, Neurological Neuronal Plasticity Neurons Nonlinear Dynamics Presynaptic Terminals Stochastic Processes Synapses
Subjects: UNSPECIFIED
Divisions: Div F > Computational and Biological Learning
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:23
Last Modified: 10 Mar 2014 17:28
DOI: 10.1038/nn.2640

Actions (login required)

View Item