CUED Publications database

Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration.

Castles, F and Morris, SM and Coles, HJ (2009) Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration. Phys Rev E Stat Nonlin Soft Matter Phys, 80. 031709-.

Full text not available from this repository.

Abstract

The flexoelectro-optic effect describes the rotation of the optic axis of a short-pitch chiral nematic liquid crystal under the application of an electric field. We investigate the effect in the uniform standing helix, or "Grandjean" configuration. An in-plane electric field is applied. The director profile is determined numerically using a static one-dimensional continuum model with strong surface anchoring. The Berreman method is used to solve for plane-wave solutions to Maxwell's equations, and predict the optical properties of the resulting structure in general cases. By using a chiral nematic with short pitch between crossed polarizers an optical switch may be generated. With no applied field the configuration is nontransmissive at normal incidence, but becomes transmissive with an applied field. For this case, numerical results using the Berreman method are supplemented with an analytic theory and found to be in good agreement. The transmitted intensity as a function of tilt, the contrast ratio, and the tilt required for full intensity modulation are presented. The angular dependence of the transmission is calculated and the isocontrast curves are plotted. For typical material and cell parameters a switching speed of 0.017 ms and contrast ratio of 1500:1 at normal incidence are predicted, at a switch-on tilt of 41.5 degrees. Experimental verification of the analytic and numerical models is provided.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div B > Photonics
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:56
Last Modified: 22 Sep 2017 20:13
DOI: