CUED Publications database

The simulation of stress fibre and focal adhesion development in cells on patterned substrates.

Pathak, A and Deshpande, VS and McMeeking, RM and Evans, AG (2008) The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J R Soc Interface, 5. pp. 507-524. ISSN 1742-5689

Full text not available from this repository.


The remodelling of the cytoskeleton and focal adhesion (FA) distributions for cells on substrates with micro-patterned ligand patches is investigated using a bio-chemo-mechanical model. We investigate the effect of ligand pattern shape on the cytoskeletal arrangements and FA distributions for cells having approximately the same area. The cytoskeleton model accounts for the dynamic rearrangement of the actin/myosin stress fibres. It entails the highly nonlinear interactions between signalling, the kinetics of tension-dependent stress-fibre formation/dissolution and stress-dependent contractility. This model is coupled with another model that governs FA formation and accounts for the mechano-sensitivity of the adhesions from thermodynamic considerations. This coupled modelling scheme is shown to capture a variety of key experimental observations including: (i) the formation of high concentrations of stress fibres and FAs at the periphery of circular and triangular, convex-shaped ligand patterns; (ii) the development of high FA concentrations along the edges of the V-, T-, Y- and U-shaped concave ligand patterns; and (iii) the formation of highly aligned stress fibres along the non-adhered edges of cells on the concave ligand patterns. When appropriately calibrated, the model also accurately predicts the radii of curvature of the non-adhered edges of cells on the concave-shaped ligand patterns.

Item Type: Article
Uncontrolled Keywords: Animals Biomechanical Phenomena Cell Culture Techniques Computer Simulation Cytoskeleton Focal Adhesions Ligands Models, Biological Stress Fibers
Divisions: Div C > Materials Engineering
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:11
Last Modified: 18 Aug 2020 11:22
DOI: 10.1098/rsif.2007.1182