CUED Publications database

The modified Kanerva model for automatic speech recognition

Prager, RW and Fallside, F (1989) The modified Kanerva model for automatic speech recognition. Computer Speech and Language, 3. pp. 61-81. ISSN 0885-2308

Full text not available from this repository.

Abstract

A parallel processing network derived from Kanerva's associative memory theory Kanerva 1984 is shown to be able to train rapidly on connected speech data and recognize further speech data with a label error rate of 0·68%. This modified Kanerva model can be trained substantially faster than other networks with comparable pattern discrimination properties. Kanerva presented his theory of a self-propagating search in 1984, and showed theoretically that large-scale versions of his model would have powerful pattern matching properties. This paper describes how the design for the modified Kanerva model is derived from Kanerva's original theory. Several designs are tested to discover which form may be implemented fastest while still maintaining versatile recognition performance. A method is developed to deal with the time varying nature of the speech signal by recognizing static patterns together with a fixed quantity of contextual information. In order to recognize speech features in different contexts it is necessary for a network to be able to model disjoint pattern classes. This type of modelling cannot be performed by a single layer of links. Network research was once held back by the inability of single-layer networks to solve this sort of problem, and the lack of a training algorithm for multi-layer networks. Rumelhart, Hinton & Williams 1985 provided one solution by demonstrating the "back propagation" training algorithm for multi-layer networks. A second alternative is used in the modified Kanerva model. A non-linear fixed transformation maps the pattern space into a space of higher dimensionality in which the speech features are linearly separable. A single-layer network may then be used to perform the recognition. The advantage of this solution over the other using multi-layer networks lies in the greater power and speed of the single-layer network training algorithm. © 1989.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div F > Machine Intelligence
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:31
Last Modified: 18 Dec 2014 19:02
DOI: 10.1016/0885-2308(89)90015-6