CUED Publications database

Diffusion and chemical reaction in the porous structures of solid oxide fuel cells

Haberman, B and Young, JB (2005) Diffusion and chemical reaction in the porous structures of solid oxide fuel cells. Proceedings of the 1st European Fuel Cell Technology and Applications Conference 2005 - Book of Abstracts, 2005. 87-.

Full text not available from this repository.


The Rolls-Royce Integrated-Planar Solid Oxide Fuel Cell (IP-SOFC) consists of ceramic modules which have electrochemical cells printed on the outer surfaces. The cathodes are the outermost layer of each cell and are supplied with oxygen from air flowing over the outside of the module. The anodes are in direct contact with the ceramic structure and are supplied with fuel from internal gas channels. Natural gas is reformed into hydrogen for use by the fuel cells in a separate reformer module of similar design except that the fuel cells are replaced by a reforming catalyst layer. The performance of the modules is intrinsically linked to the behaviour of the gas flows within their porous structures. Because the porous layers are very thin, a one-dimensional flow model provides a good representation of the flow property variations between fuel channel and fuel cell or reforming catalyst. The multi-component convective-diffusive flows are simulated using a new theory of flow in porous material, the Cylindrical Pore Interpolation Model. The effects of the catalysed methane reforming and water-gas shift chemical reactions are also considered using appropriate kinetic models. It is found that the shift reaction, which is catalysed by the anode material, has certain beneficial effects on the fuel cell module performance. In the reformer module it was found that the flow resistance of the porous support structure makes it difficult to sustain a high methane conversion rate. Although the analysis is based on IP-SOFC geometry, the modelling approach and general conclusions are applicable to other types of SOFC.

Item Type: Article
Divisions: Div A > Energy
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:49
Last Modified: 03 Aug 2017 03:17