CUED Publications database

Friction of sliding surfaces carrying adsorbed lubricant layers

Williams, JA and Xie, Y (1996) Friction of sliding surfaces carrying adsorbed lubricant layers. Tribology Series, 31. pp. 651-664. ISSN 0167-8922

Full text not available from this repository.

Abstract

In concentrated contacts the behaviour of lubricants is much modified by the high local pressures: changes can arise both from molecular ordering within the very thin film lubricant layers present at the interface as well as from the deposition on the component surfaces of more solid-like polymeric boundary layers. These 'third bodies' separating the solid surfaces may have rheological or mechanical properties very different from those observed in the bulk. Classical elasto-hydrodynamic theory considers the entrapped lubricant to exhibit a piezo-viscous behaviour while the conventional picture of more solid boundary lubricant layers views their shear strength r as being linearly dependent on local pressure p, so that T = TO + ap where TO and a are constants. If TO is relatively small, then the coefficient of friction \i = T Ip ~ a and so Amonton's laws are recovered. However, the properties of adsorbed or deposited surface films, or indeed other third bodies such as debris layers, may be more complex than this. A preliminary study has looked quantitatively at the influence of the pressure dependence of the shear strength of any surface layer on the overall friction coefficient of a contact which is made up of an array of asperities whose height varies in a Gaussian manner. Individual contact points may be elastic or plastic. The analysis results in plots of coefficient of friction versus the service or load parameter PIH&NRa where P is the nominal pressure on the contact, HS the hardness of the deforming surface, N the asperity density, R the mean radius of curvature of the asperities, and a is the standard deviation of their height distribution. In principle, any variation oft withp can be incorporated into the model; however, in this initial study we have used data on colloidal suspensions from the group at the Ecole Centrale de Lyon as well as examining the effect of functional relationships of somewhat greater complexity than a simple linear form. Results of the analysis indicate that variations in fj. are possible as the load is varied which depend on the statistical spread of behaviour at individual asperity contacts. The value of this analysis is that it attempts to combine the behaviour of films on the molecular scale with the topography of real engineering surfaces and so give an indication of the effects at the full-size or macro-scale that can be achieved by chemical or molecular surface engineering.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div C > Materials Engineering
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:01
Last Modified: 27 Nov 2014 19:21
DOI: