CUED Publications database

Effects of the user model on simulation-based learning of dialogue strategies

Schatzmann, J and Stuttle, MN and Weilhammer, K and Young, S (2005) Effects of the user model on simulation-based learning of dialogue strategies. Proceedings of ASRU 2005: 2005 IEEE Automatic Speech Recognition and Understanding Workshop, 2005. pp. 412-417.

Full text not available from this repository.


Over the past decade, a variety of user models have been proposed for user simulation-based reinforcement-learning of dialogue strategies. However, the strategies learned with these models are rarely evaluated in actual user trials and it remains unclear how the choice of user model affects the quality of the learned strategy. In particular, the degree to which strategies learned with a user model generalise to real user populations has not be investigated. This paper presents a series of experiments that qualitatively and quantitatively examine the effect of the user model on the learned strategy. Our results show that the performance and characteristics of the strategy are in fact highly dependent on the user model. Furthermore, a policy trained with a poor user model may appear to perform well when tested with the same model, but fail when tested with a more sophisticated user model. This raises significant doubts about the current practice of learning and evaluating strategies with the same user model. The paper further investigates a new technique for testing and comparing strategies directly on real human-machine dialogues, thereby avoiding any evaluation bias introduced by the user model. © 2005 IEEE.

Item Type: Article
Divisions: Div F > Machine Intelligence
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:49
Last Modified: 11 Jan 2018 02:41