CUED Publications database

Cluster analysis of heterogeneous rank data

Busse, LM and Orbanz, P and Buhmann, JM (2007) Cluster analysis of heterogeneous rank data. In: UNSPECIFIED pp. 113-120..

Full text not available from this repository.

Abstract

Cluster analysis of ranking data, which occurs in consumer questionnaires, voting forms or other inquiries of preferences, attempts to identify typical groups of rank choices. Empirically measured rankings are often incomplete, i.e. different numbers of filled rank positions cause heterogeneity in the data. We propose a mixture approach for clustering of heterogeneous rank data. Rankings of different lengths can be described and compared by means of a single probabilistic model. A maximum entropy approach avoids hidden assumptions about missing rank positions. Parameter estimators and an efficient EM algorithm for unsupervised inference are derived for the ranking mixture model. Experiments on both synthetic data and real-world data demonstrate significantly improved parameter estimates on heterogeneous data when the incomplete rankings are included in the inference process.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Subjects: UNSPECIFIED
Divisions: Div F > Computational and Biological Learning
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:04
Last Modified: 27 Nov 2014 08:45
DOI: 10.1145/1273496.1273511