CUED Publications database

Speaker and noise factorisation on the AURORA4 task

Wang, YQ and Gales, MJF (2011) Speaker and noise factorisation on the AURORA4 task. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. pp. 4584-4587. ISSN 1520-6149

Full text not available from this repository.


For many realistic scenarios, there are multiple factors that affect the clean speech signal. In this work approaches to handling two such factors, speaker and background noise differences, simultaneously are described. A new adaptation scheme is proposed. Here the acoustic models are first adapted to the target speaker via an MLLR transform. This is followed by adaptation to the target noise environment via model-based vector Taylor series (VTS) compensation. These speaker and noise transforms are jointly estimated, using maximum likelihood. Experiments on the AURORA4 task demonstrate that this adaptation scheme provides improved performance over VTS-based noise adaptation. In addition, this framework enables the speech and noise to be factorised, allowing the speaker transform estimated in one noise condition to be successfully used in a different noise condition. © 2011 IEEE.

Item Type: Article
Divisions: Div F > Machine Intelligence
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:17
Last Modified: 22 May 2018 07:17