CUED Publications database

Rain igestion in axial flow compressors at part speed

Day, I and Williams, J and Freeman, C (2008) Rain igestion in axial flow compressors at part speed. Journal of Turbomachinery, 130. ISSN 0889-504X

Full text not available from this repository.

Abstract

New experimental work is reported on the effects of water ingestion on the performance of an axial flow compressor. The background to the work is the effect that heavy rain has on an aeroengine compressor when operating in a "descent idle" mode, i.e., when the compressor is operating at part speed and when the aeromechanical effects of water ingestion are more important than the thermodynamic effects. Most of our existing knowledge in this field comes from whole engine tests. The current work provides the first known results from direct measurements on a stand-alone compressor. The influence of droplet size on path trajectory is considered both computationally and experimentally to show that most rain droplets will collide with the first row of rotor blades. The water on the blades is then centrifuged toward the casing where the normal airflow patterns in the vicinity of the rotor tips are disrupted. The result of this disruption is a reduction in compressor delivery pressure and an increase in the torque required to keep the compressor speed constant. Both effects reduce the efficiency of the machine. The behavior of the water in the blade rows is examined in detail, and simple models are proposed to explain the loss of pressure rise and the increase in torque. The measurements were obtained in a low speed compressor, making it possible to study the mechanical (increase in torque) and aerodynamic (reduction in pressure rise) effects of water ingestion without the added complication of thermodynamic effects. Copyright © 2008 by ASME.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div A > Turbomachinery
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:10
Last Modified: 14 Dec 2014 05:45
DOI: 10.1115/1.2366511