CUED Publications database

Optimal design of Functionally Graded Materials using a procedural model and Particle Swarm Optimization

Kou, XY and Parks, GT and Tan, ST (2012) Optimal design of Functionally Graded Materials using a procedural model and Particle Swarm Optimization. CAD Computer Aided Design, 44. pp. 300-310. ISSN 0010-4485

Full text not available from this repository.

Abstract

A new method for the optimal design of Functionally Graded Materials (FGM) is proposed in this paper. Instead of using the widely used explicit functional models, a feature tree based procedural model is proposed to represent generic material heterogeneities. A procedural model of this sort allows more than one explicit function to be incorporated to describe versatile material gradations and the material composition at a given location is no longer computed by simple evaluation of an analytic function, but obtained by execution of customizable procedures. This enables generic and diverse types of material variations to be represented, and most importantly, by a reasonably small number of design variables. The descriptive flexibility in the material heterogeneity formulation as well as the low dimensionality of the design vectors help facilitate the optimal design of functionally graded materials. Using the nature-inspired Particle Swarm Optimization (PSO) method, functionally graded materials with generic distributions can be efficiently optimized. We demonstrate, for the first time, that a PSO based optimizer outperforms classical mathematical programming based methods, such as active set and trust region algorithms, in the optimal design of functionally graded materials. The underlying reason for this performance boost is also elucidated with the help of benchmarked examples. © 2011 Elsevier Ltd. All rights reserved.

Item Type: Article
Uncontrolled Keywords: COMSOL Multiphysics Functionally graded material Heterogeneous material Optimal design Particle swarm optimization Sensitivity analysis
Subjects: UNSPECIFIED
Divisions: Div A > Energy
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:26
Last Modified: 08 Dec 2014 02:28
DOI: 10.1016/j.cad.2011.10.007