CUED Publications database

Conduction bottleneck in silicon nanochain single electron transistors operating at room temperature

Rafiq, MA and Masubuchi, K and Durrani, ZAK and Colli, A and Mizuta, H and Milne, WI and Oda, S (2012) Conduction bottleneck in silicon nanochain single electron transistors operating at room temperature. Japanese Journal of Applied Physics, 51. ISSN 0021-4922

Full text not available from this repository.

Abstract

Single electron transistors are fabricated on single Si nanochains, synthesised by thermal evaporation of SiO solid sources. The nanochains consist of one-dimensional arrays of ~10nm Si nanocrystals, separated by SiO 2 regions. At 300 K, strong Coulomb staircases are seen in the drain-source current-voltage (I ds-V ds) characteristics, and single-electron oscillations are seen in the drain-source current-gate voltage (I ds-V ds) characteristics. From 300-20 K, a large increase in the Coulomb blockade region is observed. The characteristics are explained using singleelectron Monte Carlo simulation, where an inhomogeneous multiple tunnel junction represents a nanochain. Any reduction in capacitance at a nanocrystal well within the nanochain creates a conduction " bottleneck", suppressing current at low voltage and improving the Coulomb staircase. The single-electron charging energy at such an island can be very high, ~20k BT at 300 K. © 2012 The Japan Society of Applied Physics.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div B > Solid State Electronics and Nanoscale Science
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:23
Last Modified: 29 Nov 2014 19:03
DOI: 10.1143/JJAP.51.025202