CUED Publications database

The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water

Ang, KH and Alexandrou, I and Mathur, ND and Amaratunga, GAJ and Haq, S (2004) The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in de-ionized water. Nanotechnology, 15. pp. 520-524. ISSN 0957-4484

Full text not available from this repository.

Abstract

Despite intensive research on optimizing the methods for depositing carbon encapsulated ferromagnetic nanoparticles, the effect of the carbon cages remains unclear. In the present work, the effect of the graphitic cages on the magnetization of the ferromagnetic core has been studied by comparing the magnetic properties of pure and carbon encapsulated Ni particles of the same size. The carbon encapsulated Ni particles were formed using an electric arc discharge in de-ionized water between a solid graphite cathode and an anode consisting of Ni and C in a mass ratio of Ni:C = 7:3. This method is shown to have potential for low cost production of carbon encapsulated Ni nanoparticle samples with narrow particle size distributions. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis were used to study the crystallography, morphology, and size distribution of the encapsulated and pure Ni nanoparticle samples. The availability of encapsulated particles with various sizes allowed us to elucidate the role of carbon cages in size-dependent properties. Our data suggest that even though encapsulation is beneficial for protection against hostile chemical environments and for avoiding low proximity phenomena, it suppresses the saturation magnetization of the Ni cores.

Item Type: Article
Uncontrolled Keywords: size onions
Subjects: UNSPECIFIED
Divisions: Div B > Electronics, Power & Energy Conversion
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:41
Last Modified: 10 Mar 2014 16:08
DOI: 10.1088/0957-4484/15/5/020

Actions (login required)

View Item