CUED Publications database

Probabilistic amplitude and frequency demodulation

Turner, RE and Sahani, M (2011) Probabilistic amplitude and frequency demodulation. Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011.

Full text not available from this repository.

Abstract

A number of recent scientific and engineering problems require signals to be decomposed into a product of a slowly varying positive envelope and a quickly varying carrier whose instantaneous frequency also varies slowly over time. Although signal processing provides algorithms for so-called amplitude-and frequency-demodulation (AFD), there are well known problems with all of the existing methods. Motivated by the fact that AFD is ill-posed, we approach the problem using probabilistic inference. The new approach, called probabilistic amplitude and frequency demodulation (PAFD), models instantaneous frequency using an auto-regressive generalization of the von Mises distribution, and the envelopes using Gaussian auto-regressive dynamics with a positivity constraint. A novel form of expectation propagation is used for inference. We demonstrate that although PAFD is computationally demanding, it outperforms previous approaches on synthetic and real signals in clean, noisy and missing data settings.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div F > Computational and Biological Learning
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:31
Last Modified: 08 Dec 2014 02:40
DOI: