CUED Publications database

Size effects in the conical indentation of an elasto-plastic solid

Danas, K and Deshpande, VS and Fleck, NA (2012) Size effects in the conical indentation of an elasto-plastic solid. Journal of the Mechanics and Physics of Solids, 60. pp. 1605-1625. ISSN 0022-5096

Full text not available from this repository.


The size effect in conical indentation of an elasto-plastic solid is predicted via the Fleck and Willis formulation of strain gradient plasticity (Fleck, N.A. and Willis, J.R., 2009, A mathematical basis for strain gradient plasticity theory. Part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045-1057). The rate-dependent formulation is implemented numerically and the full-field indentation problem is analyzed via finite element calculations, for both ideally plastic behavior and dissipative hardening. The isotropic strain-gradient theory involves three material length scales, and the relative significance of these length scales upon the degree of size effect is assessed. Indentation maps are generated to summarize the sensitivity of indentation hardness to indent size, indenter geometry and material properties (such as yield strain and strain hardening index). The finite element model is also used to evaluate the pertinence of the Johnson cavity expansion model and of the Nix-Gao model, which have been extensively used to predict size effects in indentation hardness. © 2012 Elsevier Ltd.

Item Type: Article
Divisions: Div C > Materials Engineering
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:36
Last Modified: 15 Sep 2020 05:16
DOI: 10.1016/j.jmps.2012.05.002