CUED Publications database

Partially Observable Markov Decision Processes with continuous observations for dialogue management

Williams, JD and Poupart, P and Young, S (2005) Partially Observable Markov Decision Processes with continuous observations for dialogue management. Proceedings of the 6th SIGdial Workshop on Discourse and Dialogue. pp. 25-34.

Full text not available from this repository.

Abstract

This work shows how a dialogue model can be represented as a Partially Observable Markov Decision Process (POMDP) with observations composed of a discrete and continuous component. The continuous component enables the model to directly incorporate a confidence score for automated planning. Using a testbed simulated dialogue management problem, we show how recent optimization techniques are able to find a policy for this continuous POMDP which outperforms a traditional MDP approach. Further, we present a method for automatically improving handcrafted dialogue managers by incorporating POMDP belief state monitoring, including confidence score information. Experiments on the testbed system show significant improvements for several example handcrafted dialogue managers across a range of operating conditions.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div F > Machine Intelligence
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:03
Last Modified: 08 Dec 2014 02:36
DOI: