CUED Publications database

Machine Vision Enhanced Post-Earthquake Inspection and Rapid Loss Estimation

DesRoches, R and Brilakis, I and Lowes, L and Zhu, Z and German, S and Roberts, S (2011) Machine Vision Enhanced Post-Earthquake Inspection and Rapid Loss Estimation. In: the 2011 NSF Engineering Research and Innovation Conference, 2011-1-4 to 2011-1-7, Atlanta, GA, United States of America.

Full text not available from this repository.


Manual inspection is required to determine the condition of damaged buildings after an earthquake. The lack of available inspectors, when combined with the large volume of inspection work, makes such inspection subjective and time-consuming. Completing the required inspection takes weeks to complete, which has adverse economic and societal impacts on the affected population. This paper proposes an automated framework for rapid post-earthquake building evaluation. Under the framework, the visible damage (cracks and buckling) inflicted on concrete columns is first detected. The damage properties are then measured in relation to the column's dimensions and orientation, so that the column's load bearing capacity can be approximated as a damage index. The column damage index supplemented with other building information (e.g. structural type and columns arrangement) is then used to query fragility curves of similar buildings, constructed from the analyses of existing and on-going experimental data. The query estimates the probability of the building being in different damage states. The framework is expected to automate the collection of building damage data, to provide a quantitative assessment of the building damage state, and to estimate the vulnerability of the building to collapse in the event of an aftershock. Videos and manual assessments of structures after the 2009 earthquake in Haiti are used to test the parts of the framework.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Divisions: Div D > Construction Engineering
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 20:31
Last Modified: 22 May 2018 07:33