CUED Publications database

Kinetic control of catalytic CVD for high-quality graphene at low temperatures.

Weatherup, RS and Dlubak, B and Hofmann, S (2012) Kinetic control of catalytic CVD for high-quality graphene at low temperatures. ACS Nano, 6. pp. 9996-10003.

Full text not available from this repository.

Abstract

Low-temperature (∼600 °C), scalable chemical vapor deposition of high-quality, uniform monolayer graphene is demonstrated with a mapped Raman 2D/G ratio of >3.2, D/G ratio ≤0.08, and carrier mobilities of ≥3000 cm(2) V(-1) s(-1) on SiO(2) support. A kinetic growth model for graphene CVD based on flux balances is established, which is well supported by a systematic study of Ni-based polycrystalline catalysts. A finite carbon solubility of the catalyst is thereby a key advantage, as it allows the catalyst bulk to act as a mediating carbon sink while optimized graphene growth occurs by only locally saturating the catalyst surface with carbon. This also enables a route to the controlled formation of Bernal stacked bi- and few-layered graphene. The model is relevant to all catalyst materials and can readily serve as a general process rationale for optimized graphene CVD.

Item Type: Article
Uncontrolled Keywords: Catalysis Crystallization Gases Graphite Kinetics Macromolecular Substances Materials Testing Molecular Conformation Nanostructures Particle Size Surface Properties Temperature
Subjects: UNSPECIFIED
Divisions: Div B > Solid State Electronics and Nanoscale Science
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:21
Last Modified: 20 Oct 2014 01:07
DOI: 10.1021/nn303674g