CUED Publications database

Augmented attribute representations

Sharmanska, V and Quadrianto, N and Lampert, CH (2012) Augmented attribute representations. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7576 L. pp. 242-255. ISSN 0302-9743

Full text not available from this repository.

Abstract

We propose a new learning method to infer a mid-level feature representation that combines the advantage of semantic attribute representations with the higher expressive power of non-semantic features. The idea lies in augmenting an existing attribute-based representation with additional dimensions for which an autoencoder model is coupled with a large-margin principle. This construction allows a smooth transition between the zero-shot regime with no training example, the unsupervised regime with training examples but without class labels, and the supervised regime with training examples and with class labels. The resulting optimization problem can be solved efficiently, because several of the necessity steps have closed-form solutions. Through extensive experiments we show that the augmented representation achieves better results in terms of object categorization accuracy than the semantic representation alone. © 2012 Springer-Verlag.

Item Type: Article
Uncontrolled Keywords: Discriminative Autoencoder Hybrid Representations
Subjects: UNSPECIFIED
Divisions: Div F > Computational and Biological Learning
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:21
Last Modified: 08 Dec 2014 02:34
DOI: 10.1007/978-3-642-33715-4_18