CUED Publications database

Bayesian non-parametrics and the probabilistic approach to modelling.

Ghahramani, Z (2013) Bayesian non-parametrics and the probabilistic approach to modelling. Philos Trans A Math Phys Eng Sci, 371. 20110553-. ISSN 1364-503X

Full text not available from this repository.


Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman's coalescent, Dirichlet diffusion trees and Wishart processes.

Item Type: Article
Divisions: Div F > Computational and Biological Learning
Depositing User: Cron Job
Date Deposited: 09 Dec 2016 17:13
Last Modified: 26 Jun 2017 04:32