CUED Publications database

A finite element model of magnetization of superconducting bulks using a solid-state flux pump

Coombs, TA (2011) A finite element model of magnetization of superconducting bulks using a solid-state flux pump. IEEE Transactions on Applied Superconductivity, 21. pp. 3581-3586. ISSN 1051-8223

Full text not available from this repository.


Superconductors have a bright future; they are able to carry very high current densities, switch rapidly in electronic circuits, detect extremely small perturbations in magnetic fields, and sustain very high magnetic fields. Of most interest to large-scale electrical engineering applications are the ability to carry large currents and to provide large magnetic fields. There are many projects that use the first property, and these have concentrated on power generation, transmission, and utilization; however, there are relatively few, which are currently exploiting the ability to sustain high magnetic fields. The main reason for this is that high field wound magnets can and have been made from both BSCCO and YBCO, but currently, their cost is much higher than the alternative provided by low-T c materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form, which can be magnetized to high fields. This paper explains the mechanism, which allows superconductors to be magnetized without the need for high field magnets to perform magnetization. A finite-element model is presented, which is based on the E-J current law. Results from this model show how magnetization of the superconductor builds up cycle upon cycle when a traveling magnetic wave is induced above the superconductor. © 2011 IEEE.

Item Type: Article
Divisions: Div B > Electronics, Power & Energy Conversion
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 18:57
Last Modified: 22 May 2018 06:38