CUED Publications database

ChESS - Quick and Robust Detection of Chess-board Features

Bennett, S and Lasenby, J (2013) ChESS - Quick and Robust Detection of Chess-board Features.

Full text not available from this repository.

Abstract

Localization of chess-board vertices is a common task in computer vision, underpinning many applications, but relatively little work focusses on designing a specific feature detector that is fast, accurate and robust. In this paper the `Chess-board Extraction by Subtraction and Summation' (ChESS) feature detector, designed to exclusively respond to chess-board vertices, is presented. The method proposed is robust against noise, poor lighting and poor contrast, requires no prior knowledge of the extent of the chess-board pattern, is computationally very efficient, and provides a strength measure of detected features. Such a detector has significant application both in the key field of camera calibration, as well as in Structured Light 3D reconstruction. Evidence is presented showing its robustness, accuracy, and efficiency in comparison to other commonly used detectors both under simulation and in experimental 3D reconstruction of flat plate and cylindrical objects

Item Type: Article
Uncontrolled Keywords: cs.CV cs.CV
Subjects: UNSPECIFIED
Divisions: Div F > Signal Processing and Communications
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:45
Last Modified: 10 Mar 2014 16:45
DOI:

Actions (login required)

View Item