CUED Publications database

THE SENSITIVITY OF 2D COMPRESSOR INCIDENCE RANGE TO IN-SERVICE GEOMETRIC VARIATION

Goodhand, MN and Miller, RJ and Lung, HW THE SENSITIVITY OF 2D COMPRESSOR INCIDENCE RANGE TO IN-SERVICE GEOMETRIC VARIATION. In: ASME Turbo Expo, 2012-6-11 to 2012-6-15, Copenhagen. (Unpublished)

Full text not available from this repository.

Abstract

The loss mechanisms which control 2D incidence range are discussed with an emphasis on determining which real in-service geometric variations will have the largest impact. For the majority of engine compressor blades (Minlet>0.55) both the negative and positive incidence limits are controlled by supersonic patches. It is shown that these patches are highly sensitive to the geometric variations close to, and around the leading edge. The variations used in this study were measured from newly manufactured as well as ex-service blades. Over most the high pressure compressor considered, it was shown that manufacture variations dominated. The first part of the paper shows that, despite large geometric variations (~10% of leading edge thickness), the incidence range responded in a linear way. The result of this is that the geometric variations have little effect on the mean incidence range of a row of blades. In the second part of the paper a region of the design space is identified where non-linear behavior can result in a 10% reduction in positive incidence range. The mechanism for this is reported and design guidelines for its avoidance offered. In the final part of the paper, the linear behavior at negative incidence and the transonic nature of the flow is exploited to design a robust asymmetric leading edge with a 5% increase in incidence range.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Subjects: UNSPECIFIED
Divisions: Div A > Turbomachinery
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:46
Last Modified: 30 Jun 2014 01:09
DOI: