CUED Publications database

Beyond dataset bias: Multi-task unaligned shared knowledge transfer

Tommasi, T and Quadrianto, N and Caputo, B and Lampert, CH (2013) Beyond dataset bias: Multi-task unaligned shared knowledge transfer. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7724 L. pp. 1-15. ISSN 0302-9743

Full text not available from this repository.

Abstract

Many visual datasets are traditionally used to analyze the performance of different learning techniques. The evaluation is usually done within each dataset, therefore it is questionable if such results are a reliable indicator of true generalization ability. We propose here an algorithm to exploit the existing data resources when learning on a new multiclass problem. Our main idea is to identify an image representation that decomposes orthogonally into two subspaces: a part specific to each dataset, and a part generic to, and therefore shared between, all the considered source sets. This allows us to use the generic representation as un-biased reference knowledge for a novel classification task. By casting the method in the multi-view setting, we also make it possible to use different features for different databases. We call the algorithm MUST, Multitask Unaligned Shared knowledge Transfer. Through extensive experiments on five public datasets, we show that MUST consistently improves the cross-datasets generalization performance. © 2013 Springer-Verlag.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div F > Computational and Biological Learning
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:16
Last Modified: 08 Dec 2014 02:21
DOI: 10.1007/978-3-642-37331-2_1