CUED Publications database

Engineering hierarchical nanostructures by elastocapillary self-assembly

De Volder, M and Hart, AJ (2013) Engineering hierarchical nanostructures by elastocapillary self-assembly. Angewandte Chemie - International Edition, 52. pp. 2412-2425. ISSN 1433-7851

Full text not available from this repository.


Surfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high-performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self-assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self-assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self-assembly of nanofilaments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Item Type: Article
Divisions: Div E > Production Processes
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:17
Last Modified: 24 May 2018 02:06