CUED Publications database

Turbine blade tip heat transfer in low speed and high speed flows

Wheeler, APS and Atkins, NR and He, L (2009) Turbine blade tip heat transfer in low speed and high speed flows. Proceedings of the ASME Turbo Expo, 3. pp. 349-359.

Full text not available from this repository.

Abstract

In this paper, high and low speed tip flows are investigated for a high-pressure turbine blade. Previous experimental data are used to validate a CFD code, which is then used to study the tip heat transfer in high and low speed cascades. The results show that at engine representative Mach numbers the tip flow is predominantly transonic. Thus, compared to the low speed tip flow, the heat transfer is affected by reductions in both the heat transfer coefficient and the recovery temperature. The high Mach numbers in the tip region (M>1.5) lead to large local variations in recovery temperature. Significant changes in the heat transfer coefficient are also observed. These are due to changes in the structure of the tip flow at high speed. At high speeds, the pressure side corner separation bubble reattachment occurs through supersonic acceleration which halves the length of the bubble when the tip gap exit Mach number is increased from 0.1 to 1.0. In addition, shock/boundary-layer interactions within the tip gap lead to large changes in the tip boundary-layer thickness. These effects give rise to significant differences in the heat-transfer coefficient within the tip region compared to the low-speed tip flow. Compared to the low speed tip flow, the high speed tip flow is much less dominated by turbulent dissipation and is thus less sensitive to the choice of turbulence model. These results clearly demonstrate that blade tip heat transfer is a strong function of Mach number, an important implication when considering the use of low speed experimental testing and associated CFD validation in engine blade tip design. Copyright © 2009 by ASME.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div A > Turbomachinery
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:16
Last Modified: 08 Dec 2014 02:20
DOI: 10.1115/GT2009-59404