CUED Publications database

Trailing edge noise theory for rotating blades in uniform flow

Sinayoko, S and Kingan, M and Agarwal, A (2013) Trailing edge noise theory for rotating blades in uniform flow.

Full text not available from this repository.

Abstract

This paper presents a new formulation for trailing edge noise radiation from rotating blades based on an analytical solution of the convective wave equation. It accounts for distributed loading and the effect of mean flow and spanwise wavenumber. A commonly used theory due to Schlinker and Amiet (1981) predicts trailing edge noise radiation from rotating blades. However, different versions of the theory exist; it is not known which version is the correct one and what the range of validity of the theory is. This paper addresses both questions by deriving Schlinker and Amiet's theory in a simple way and by comparing it to the new formulation, using model blade elements representative of a wind turbine, a cooling fan and an aircraft propeller. The correct form of Schlinker and Amiet's theory (1981) is identified. It is valid at high enough frequency, i.e. for a Helmholtz number relative to chord greater than one and a rotational frequency much smaller than the angular frequency of the noise sources.

Item Type: Article
Uncontrolled Keywords: physics.flu-dyn physics.flu-dyn
Subjects: UNSPECIFIED
Divisions: Div A > Fluid Mechanics
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:59
Last Modified: 10 Mar 2014 17:23
DOI:

Actions (login required)

View Item