CUED Publications database

A flexural crack model for damage detection in reinforced concrete structures

Hamad, WI and Owen, JS and Hussein, MFM (2011) A flexural crack model for damage detection in reinforced concrete structures. Journal of Physics: Conference Series, 305. ISSN 1742-6588

Full text not available from this repository.

Abstract

The use of changes in vibration data for damage detection of reinforced concrete structures faces many challenges that obstruct its transition from a research topic to field applications. Among these is the lack of appropriate damage models that can be deployed in the damage detection methods. In this paper, a model of a simply supported reinforced concrete beam with multiple cracks is developed to examine its use for damage detection and structural health monitoring. The cracks are simulated by a model that accounts for crack formation, propagation and closure. The beam model is studied under different dynamic excitations, including sine sweep and single excitation frequency, for various damage levels. The changes in resonant frequency with increasing loads are examined along with the nonlinear vibration characteristics. The model demonstrates that the resonant frequency reduces by about 10% at the application of 30% of the ultimate load and then drops gradually by about 25% at 70% of the ultimate load. The model also illustrates some nonlinearity in the dynamic response of damaged beams. The appearance of super-harmonics shows that the nonlinearity is higher when the damage level is about 35% and then decreases with increasing damage. The restoring force-displacement relationship predicted the reduction in the overall stiffness of the damaged beam. The model quantitatively predicts the experimental vibration behaviour of damaged RC beams and also shows the damage dependency of nonlinear vibration behaviour. © 2011 Published under licence by IOP Publishing Ltd.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: UNSPECIFIED
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:46
Last Modified: 08 Dec 2014 02:19
DOI: 10.1088/1742-6596/305/1/012037