CUED Publications database

Initial phase modelling in numerical explosion applied to process safety

Vianna, SSV and Cant, RS (2013) Initial phase modelling in numerical explosion applied to process safety. Process Safety and Environmental Protection. ISSN 0957-5820

Full text not available from this repository.

Abstract

The utilisation of computational fluid dynamics (CFD) in process safety has increased significantly in recent years. The modelling of accidental explosion via CFD has in many cases replaced the classical Multi Energy and Brake Strehlow methods. The benefits obtained with CFD modelling can be diminished if proper modelling of the initial phase of explosion is neglected. In the early stages of an explosion, the flame propagates in a quasi-laminar regime. Proper modelling of the initial laminar phase is a key aspect in order to predict the peak pressure and the time to peak pressure. The present work suggests a modelling approach for the initial laminar phase in explosion scenarios. Findings are compared with experimental data for two classical explosion test cases which resemble the common features in chemical process areas (confinement and congestion). A detailed analysis of the threshold for the transition from laminar to turbulent regime is also carried out. The modelling is implemented in a fully 3D Navier-Stokes compressible formulation. Combustion is treated using a laminar flamelet approach based on the Bray, Moss and Libby (BML) formulation. A novel modified porosity approach developed for the unstructured solver is also considered. Results agree satisfactorily with experiments and the modelling is found to be robust. © 2013 The Institution of Chemical Engineers.

Item Type: Article
Uncontrolled Keywords: Chemical process safety Computational modelling Explosion Unstructured mesh
Subjects: UNSPECIFIED
Divisions: Div A > Energy
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:14
Last Modified: 08 Dec 2014 02:19
DOI: 10.1016/j.psep.2013.05.002