CUED Publications database

Slow peaking and low-gain designs for global stabilization of nonlinear systems

Sepulchre, R (2000) Slow peaking and low-gain designs for global stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 45. pp. 453-461. ISSN 0018-9286

Full text not available from this repository.


This paper presents an analysis of the slow-peaking phenomenon, a pitfall of low-gain designs that imposes basic limitations to large regions of attraction in nonlinear control systems. The phenomenon is best understood on a chain of integrators perturbed by a vector field up(x, u) that satisfies p(x, 0) = 0. Because small controls (or low-gain designs) are sufficient to stabilize the unperturbed chain of integrators, it may seem that smaller controls, which attenuate the perturbation up(x, u) in a large compact set, can be employed to achieve larger regions of attraction. This intuition is false, however, and peaking may cause a loss of global controllability unless severe growth restrictions are imposed on p(x, u). These growth restrictions are expressed as a higher order condition with respect to a particular weighted dilation related to the peaking exponents of the nominal system. When this higher order condition is satisfied, an explicit control law is derived that achieves global asymptotic stability of x = 0. This stabilization result is extended to more general cascade nonlinear systems in which the perturbation p(x, v) v, v = (ξ, u) T, contains the state ξ and the control u of a stabilizable subsystem ξ = a(ξ, u). As an illustration, a control law is derived that achieves global stabilization of the frictionless ball-and-beam model.

Item Type: Article
Divisions: Div F > Control
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:22
Last Modified: 09 Sep 2021 01:31
DOI: 10.1109/9.847724