CUED Publications database

Raman scattering efficiency of graphene

Klar, P and Lidorikis, E and Eckmann, A and Verzhbitskiy, IA and Ferrari, AC and Casiraghi, C (2013) Raman scattering efficiency of graphene. Physical Review B - Condensed Matter and Materials Physics, 87. ISSN 1098-0121

Full text not available from this repository.


We determine the Raman scattering efficiency of the G and 2D peaks in graphene. Three substrates are used: silicon covered with 300 or 90 nm oxide, and calcium fluoride (CaF2). On Si/SiOx, the areas of the G and 2D peak show a strong dependence on the substrate due to interference effects, while on CaF2 no significant dependence is detected. Unintentional doping is reduced by placing graphene on CaF2. We determine the Raman scattering efficiency by comparison with the 322 cm -1 peak area of CaF2. At 2.41 eV, the Raman efficiency of the G peak is ∼200×10-5 m-1Sr-1, and changes with the excitation energy to the power of 4. The 2D Raman efficiency is at least one order of magnitude higher than that of the G peak, with a different excitation energy dependence. © 2013 American Physical Society.

Item Type: Article
Divisions: Div B > Solid State Electronics and Nanoscale Science
Depositing User: Cron Job
Date Deposited: 09 Dec 2016 17:41
Last Modified: 22 Jun 2017 04:55