CUED Publications database

Fluid-structure interaction simulations of a tension-cone inflatable aerodynamic decelerator

Kramer, RMJ and Cirak, F and Pantano, C (2013) Fluid-structure interaction simulations of a tension-cone inflatable aerodynamic decelerator. AIAA Journal, 51. pp. 1640-1656. ISSN 0001-1452

Full text not available from this repository.

Abstract

A series of fluid-structure interaction simulations of an aerodynamic tension-cone supersonic decelerator prototype intended for large mass payload deployment in planetary explorations are discussed. The fluid-structure interaction computations combine large deformation analysis of thin shells with large-eddy simulation of compressible turbulent flows using a loosely coupled approach to enable quantification of the dynamics of the vehicle. The simulation results are compared with experiments carried out at the NASA Glenn Research Center. Reasonably good agreement between the simulations and the experiment is observed throughout a deflation cycle. The simulations help to illuminate the details of the dynamic progressive buckling of the tension-cone decelerator that ultimately results in the collapse of the structure as the inflation pressure is decreased. Furthermore, the tension-cone decelerator exhibits a transient oscillatory behavior under impulsive loading that ultimately dies out. The frequency of these oscillations was determined to be related to the acoustic time scale in the compressed subsonic region between the bow shock and the structure. As shown, when the natural frequency of the structure and the frequency of the compressed subsonic region approximately match, the decelerator exhibits relatively large nonaxisymetric oscillations. The observed response appears to be a fluid-structure interaction resonance resulting from an acoustic chamber (pistonlike) mode exciting the structure. Copyright © 2013 by Christopher Porter, R. Mark Rennie, Eric J. Jumper.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div D > Structures
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:28
Last Modified: 08 Dec 2014 02:18
DOI: 10.2514/1.J051939