CUED Publications database

Tailored seeding geometries for the multi-fidelity design of compression systems

Eastwood, JP and Ghisu, T and Jarrett, JP (2013) Tailored seeding geometries for the multi-fidelity design of compression systems. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

Full text not available from this repository.

Abstract

Design optimisation of compressor systems is a computationally expensive problem due to the large number of variables, complicated design space and expense of the analysis tools. One approach to reduce the expense of the process and make it achievable in industrial timescales is to employ multi-fidelity techniques, which utilise more rapid tools in conjunction with the highest fidelity analyses. The complexity of the compressor design landscape is such that the starting point for these optimisations can influence the achievable results; these starting points are often existing (optimised) compressor designs, which form a limited set in terms of both quantity and diversity of the design. To facilitate the multi-fidelity optimisation procedure, a compressor synthesis code was developed which allowed the performance attributes (e.g. stage loadings, inlet conditions) to be stipulated, enabling the generation of a variety of compressors covering a range of both design topology and quality to act as seeding geometries for the optimisation procedures. Analysis of the performance of the multi-fidelity optimisation system when restricting its exploration space to topologically different areas of the design space indicated little advantage over allowing the system to search the design space itself. However, comparing results from optimisations started from seed designs with different aerodynamic qualites indicated an improved performance could be achieved by starting an optimisation from a higher quality point, and thus that the choice of starting point did affect the final outcome of the optimisations. Both investigations indicated that the performance gains through the optimisation were largely defined by the early exploration of the design space where the multi-fidelity speedup could be exploited, thus extending this region is likely to have the greatest effect on performance of the optimisation system. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div C > Engineering Design
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:04
Last Modified: 08 Dec 2014 02:18
DOI: 10.2514/6.2013-1600