CUED Publications database

On the effects of turbulence modelling in design optimisation for high-lift devices

Guo, C and Kipouros, T and Shapiro, E and Savvaris, A (2012) On the effects of turbulence modelling in design optimisation for high-lift devices. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012.

Full text not available from this repository.

Abstract

Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - ε realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 by the authors.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div C > Engineering Design
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 12:04
Last Modified: 08 Dec 2014 02:17
DOI: