CUED Publications database

Re-mobilization of pile shaft friction after an earthquake

Stringer, ME and Madabhushi, SPG (2013) Re-mobilization of pile shaft friction after an earthquake. Canadian Geotechnical Journal, 50. pp. 979-988. ISSN 0008-3674

Full text not available from this repository.


During strong earthquakes, significant excess pore pressures can develop in saturated soils. After shaking ceases, the dissipation of these pressures can cause significant soil settlement, creating downward-acting frictional loads on piled foundations. Additionally, if the piles do not support the full axial load at the end of shaking, then the proportion of the superstructure's vertical loading carried by the piles may change as a result of the soil settlement, further altering the axial load distribution on piles as the soil consolidates. In this paper, the effect of hydraulic conductivity and initial post-shaking pile head loading is investigated in terms of the changing axial load distribution and settlement responses. The investigation is carried out by considering the results from four dynamic centrifuge experiments in which a 2 × 2 pile group was embedded in a two-layer profile and subjected to strong shaking. It is found that large contrasts in hydraulic conductivity between the two layers of the soil model affected both the pile group settlements and axial load distribution. Both these results stem from the differences in excess pore pressure dissipation, part of which took place very rapidly when the underlying soil layer had a large hydraulic conductivity.

Item Type: Article
Divisions: Div D > Geotechnical and Environmental
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:13
Last Modified: 09 Sep 2021 01:38
DOI: 10.1139/cgj-2012-0261