CUED Publications database

Oxygen carrier dispersion in inert packed beds to improve performance in chemical looping combustion

Harper, RN and Boyce, CM and Scott, SA (2013) Oxygen carrier dispersion in inert packed beds to improve performance in chemical looping combustion. Chemical Engineering Journal, 234. pp. 464-474. ISSN 1385-8947

Full text not available from this repository.

Abstract

Various packed beds of copper-based oxygen carriers (CuO on Al2O3) were tested over 100 cycles of low temperature (673K) Chemical Looping Combustion (CLC) with H2 as the fuel gas. The oxygen carriers were uniformly mixed with alumina (Al2O3) in order to investigate the level of separation necessary to prevent agglomeration. It was found that a mass ratio of 1:6 oxygen carrier to alumina gave the best performance in terms of stable, repeating hydrogen breakthrough curves over 100 cycles. In order to quantify the average separation achieved in the mixed packed beds, two sphere-packing models were developed. The hexagonal close-packing model assumed a uniform spherical packing structure, and based the separation calculations on a hypergeometric probability distribution. The more computationally intensive full-scale model used discrete element modelling to simulate random packing arrangements governed by gravity and contact dynamics. Both models predicted that average 'nearest neighbour' particle separation drops to near zero for oxygen carrier mass fractions of x≥0.25. For the packed bed systems studied, agglomeration was observed when the mass fraction of oxygen carrier was above this threshold. © 2013 Elsevier B.V.

Item Type: Article
Uncontrolled Keywords: Chemical looping combustion Discrete element modelling Hexagonal close-packing Oxygen carrier Packed bed reactor Sphere packing
Subjects: UNSPECIFIED
Divisions: Div A > Energy
Depositing User: Cron Job
Date Deposited: 07 Mar 2014 11:45
Last Modified: 08 Dec 2014 02:17
DOI: 10.1016/j.cej.2013.08.090